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A tight-binding model for eg electrons coupled to Jahn-Teller lattice distortions is studied via Monte Carlo
simulations. By focusing on the periodicity of the cooperative Jahn-Teller distortions, and the one-particle
spectral function, our results clarify the physical origin of the Fermi-arcs phase observed in layered mangan-
ites. In a range of parameters where no broken symmetry phase exists, the nearly nested Fermi surface favors
certain correlations between Jahn-Teller distortions. The spectral weight near the Brillouin zone edge is sup-
pressed, leading to the pseudogap in the density of states. We discuss the stability of this phase as a function
of temperature and coupling strength for different hole dopings.
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I. INTRODUCTION

The pseudogap phase, where the Fermi surface appears as
four disconnected arcs, has been considered as a crucial in-
gredient to understand the physics of high critical tempera-
ture superconductors based on copper oxide layers. Recently,
angle resolved photoemission spectroscopy �ARPES�
experiments1 in a layered manganite revealed a strikingly
similar Fermi surface, unveiling unexpected similarities be-
tween two of the most studied strongly correlated families of
materials: the manganites and the cuprates. The results of
Ref. 1 are an example of the renewed interest in layered
manganites2–5 triggered by these Cu-Mn oxide similarities,
and made possible by the continuously improving crystal
quality and advances in experimental techniques.

One of the attractive features of manganites is the possi-
bility to dope holes in the system by chemical substitution of,
for instance, trivalent La by divalent Sr.6 Another parameter
that can vary is the dimensionality: MnO6 octahedra form a
three-dimensional �3D� network in manganites with the per-
ovskite structure �as in LaMnO3�, but they are also found
forming a two-dimensional �2D� layer, one octahedra thick,
separated by rock-salt-type layers in single-layer manganites
�LaSrMnO4�, and as two octahedra thick layers in bilayer
manganites �La2SrMnO7�. Sample quality has allowed a re-
cent careful and precise determination of the phase diagram
of the bilayer compounds as a function of doping.7 It is in-
teresting to remark that physical properties are so sensitive to
doping that these properties, together with theoretical consid-
erations, are sometimes used to improve the precision in the
determination of the number of carriers.8

The bilayer with hole doping x=0.4 is an interesting com-
pound, and its properties have been very well established.9,10

Similarly to some of the perovskite 3D compounds, it dis-
plays a temperature-induced ferromagnetic �FM� metal to
paramagnetic insulator transition, and the concomitant colos-
sal magnetoresistance effect under applied magnetic fields. It
is for this compound that the mentioned ARPES experiments
were carried out.1 They showed a peculiar Fermi surface
reminiscent of the pseudogap cuprates, with suppressed

spectral weight in the �� ,��→ �0,�� antinodal direction, co-
existing with a coherent quasiparticle peak in the �� ,��
→ �0,0� nodal direction. A strong reduction of at least 90%
�Ref. 3� �as opposed to the complete suppression1� has also
been reported. The very fact that such a controversy can be
held shows the precision reached by photoemission
techniques.

The phase diagram as a function of hole doping includes
different magnetic ground states,7 but as the metallicity sur-
vives for a wide doping range, other Fermi surface measure-
ments using ARPES have been performed for different val-
ues of x. Subtle and precision demanding effects, such as
bilayer splitting of the Fermi surface �due to hopping of the
carriers between the two Mn planes in the bilayers�, have
been observed at hole dopings lower than x=0.4.11,12 Experi-
ments for higher dopings can be found in Ref. 5. In general,
with today’s ARPES precision it is possible to track changes
and detailed features of the spectral function and the Fermi
surface, making this technique specially suitable to study the
different states in the metal to insulator transitions, or the
transition itself.4 Recent efforts complement the pioneer
one,13 where the reduction in the density of states at the
Fermi energy, then termed pseudogap, was first observed in
the context of manganites.

The present numerical study builds over our previous ex-
perience in studying the double-exchange model coupled to
lattice distortions,14–17 with the aim of establishing direct
connections between results of the microscopic model and
experiments. In order to achieve this goal, in this effort we
have used twisted boundary conditions for the fermionic sec-
tor �Sec. II A�, a well understood tool but not previously
used �to our knowledge� in numerical efforts similar to the
present one. This technical improvement provides a much
more detailed information about the spectral function, both at
the Fermi level and other energies. The results thus obtained
show that a microscopic model with large Hund’s coupling
and eg electrons coupled to cooperative Jahn-Teller distor-
tions is enough to understand the pseudogap phase in man-
ganites, and that this phase indeed displays a cuprate-like
Fermi surface with arcs, in agreement with experiments.1,3

Fluctuations in the Jahn-Teller distortions at different sites
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are correlated, and the wave vectors are such that they con-
nect nested �as proposed in Ref. 3� or nearly nested parts of
the Fermi surface. This produces a loss of coherence and
spectral weight for electrons with the nested momenta, near
the Brillouin zone face, giving rise to the arclike Fermi
surface.

The rest of the paper is organized as follows. Section II A
explains the microscopic model, the different approxima-
tions, the Monte Carlo procedure, and the use of twisted
boundary conditions. The first results, regarding the model
without interactions, are found in Sec. III, where the concept
of nonperfect �or partial� nesting is defined. Section IV con-
tains the results of numerical simulations for the half-doped
case, in particular, the effects of electron-lattice coupling and
temperature on the spectral function, and the changes they
induce in the Fermi surface. Section V extends the analysis
to other dopings, x=0.4 and x=0.6. The conclusions and a
brief summary are presented in Sec. VI. The Appendix pro-
vides details about the electron-lattice coupling in
manganites.

II. MODEL

A. Layered manganites

The anisotropy in the conductivity of the bilayer manga-
nites is large ��102�,9 and although some weak interlayer
coupling exists, assuming a two-dimensional system is a
good starting point. The focus of this article is not on deter-
mining ordering temperatures, but on the electronic structure
of the system at low temperatures. Also, only one MnO2
plane is considered. Although certainly there are differences
between single-layer and bilayer manganites, this work
shows that the single-layer approximation can give a good
understanding of the physics of bilayered manganites.

The active electronic degrees of freedom are the Mn d
orbitals. Among them, the t2g orbitals lie deeper in energy
due to crystal field splitting, and the Fermi surface arises
from the eg orbitals, x2-y2 and 3z2-r2. A commonly made
approximation is to send Hund’s coupling to infinity, and to
consider the 3/2 spin resulting from the t2g electrons as a
classical spin. In general, a large Hund’s coupling leads to
the double-exchange model, and to very interesting physics
that has been much explored in the past. Our focus will be on
temperatures lower that the Curie temperature of the system
�Tc=120 K for x=0.4� and, as a consequence, we will as-
sume perfect ferromagnetic spin order within the MnO2
plane. Therefore, here perfectly spin polarized electrons are
assumed to be moving in a ferromagnetic background. The
t2g background spins only add a constant term to the Hamil-
tonian, and it is possible to ignore both those classical spins
and the spin degree of freedom of the perfectly polarized eg
electrons. Previous extensive numerical work by several
groups and direct comparison between our results and
ARPES experiments justify the approximations made.

We are aware that charge-ordered states are the ground
states at dopings x=0.5 �Ref. 8� and x=0.6 �Ref. 7�; dopings
which are also studied in this paper. But these states are
fragile and as x changes as little as 2% they become A-type
antiferromagnetically ordered and display metallic

conductivity.7 In the A-type antiferromagnetic �AF� state the
spins are FM aligned within the planes, with antiferromag-
netic coupling in the z direction. In this situation, the double
exchange18 mechanism allows the electrons to move only in
the xy plane. The results presented in this paper for x=0.5
and x=0.6, assuming FM order within the plane, are not only
useful to gain deeper understanding, but they are also rel-
evant for antiferromagnetic metallic samples with hole dop-
ing close to �but not exactly equal to� those values.

B. Hamiltonian

The Hamiltonian, therefore, describes the eg electrons,
their kinetic energy in a ferromagnetic background, and the
interaction with the lattice distortions,

H = HK + He-latt. �1�

The kinetic energy term is a tight-binding Hamiltonian,

HK = − �
i,u,a,a�

ta,a�
u Ci,a

+ Ci+u,a�, �2�

where a and a� run over orbitals �1�= �x2-y2� and �2�
= �3z2-r2�, and t takes into account the different overlaps be-
tween the orbitals along the directions u=x ,y �Ref. 19�:
t1,1
x =3t2,2

x =�3t1,2
x = t and t1,1

y =3t2,2
y =−�3t1,2

y = t. Throughout
this work t is the energy unit. The close similarity between
the spectral function arising from our calculation and ARPES
experiments allows us to estimate t to be 0.5–0.6 eV. Since
the units are such that the Boltzmann constant KB is one,
then this together with the estimated value of t suggests that
T=0.01 in this work is approximately 60 K.

Freezing the magnetic degree of freedom allows us to
concentrate on the role of the lattice. The second part of the
Hamiltonian describes lattice distortions and their interaction
with electrons. Electrons are adiabatically coupled to those
distortions, and the kinetic aspects or the quantum nature of
those distortions �phonons� are not taken into account. Fur-
thermore, we will concentrate on the Jahn-Teller
distortions,20 ignoring the small tetrahedral distortion of the
lattice and buckling modes that change the Mn-O-Mn angles.
The portion of the Hamiltonian related with the lattice then
reads

He-latt = ��
i

�− Q1i�i + Q2i�xi + Q3i�zi�

+
1

2�
i

�Q1i
2 + Q2i

2 + Q3i
2 � , �3�

where �i is the density operator at site i, and �xi and �zi are
the corresponding Pauli matrices in the eg subspace, which
express the coupling of distortions, Q, to electrons. In par-
ticular, Q1i is the breathing mode of the MnO6 octahedron
around the ith manganese ion, and Q2i and Q3i are the Jahn-
Teller modes. Cooperative effects are taken into account by
expressing the Q’s in terms of the positions of the oxygen
ions, as explained in the Appendix. The first part of Eq. �3�
corresponds to the electron-lattice interaction, while the sec-
ond part is the elastic energy cost of the lattice distortions. �
measures the interaction strength. The Hamiltonian �3� is
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well known.21 In several prior efforts, the sign of the cou-
pling between the breathing mode and the density was posi-
tive. We briefly argue why it should be negative �as in Eq.
�3�� and the �limited� effect that this has on the physics of
manganites, in the Appendix, where further details about the
model can be found. This difference in sign does not affect
the conclusions of previous efforts that included the breath-
ing mode since usually these modes were suppressed by a
large spring constant.

The interorbital and intraorbital electron-electron interac-
tions are also important in manganites, especially at low hole
doping. However, the large Hund’s coupling approximation
made here �and in several other previous studies of
manganites21� entirely prevents double occupancy of the
same orbital, and it is thus equivalent to working in the large
on-site Hubbard coupling U limit. With regards to the inter-
orbital Hubbard coupling U�, previous work in the mean-
field approximation22 has shown that the effect of U� can be
considered by a redefinition of the electron-lattice Jahn-
Teller coupling �. The reason is that at intermediate or large
�, the simultaneous population of the two active Mn orbitals
is suppressed. Thus, although U and U� are not explicitly
considered, they are effectively taken into account in our
model.

C. Twisted boundary conditions and computational details

In this work, the focus is on the electronic structure and
the periodicity and magnitude of the lattice distortions. These
properties are studied by means of Monte Carlo simulations
with twisted boundary conditions.

The use of twisted boundary conditions allows us to ob-
tain a good description of the electronic spectral function.
The approximation of considering lattice distortions with a
periodic system of size L is still made. But for a correlated
system �and any electronic system in general� which can be
mapped onto a one-electron system coupled to a periodic
classical field, as in our case, the use of twisted boundary
conditions constitutes a systematic way to improve the accu-
racy of the calculations.

Since within the simulation system, distortions have pe-
riod L, the potential felt by electrons has not completely lost
the translation symmetry, and Bloch theorem can be applied.
It is then possible to choose the eigenstates, �nk so that

�nk�r + R� = exp i�k . R��nk�r� , �4�

where R are the vectors of the Bravais lattice with the peri-
odicity of the system, in 2D, R= �nxL ,nyL�. If we consider
the subspace of wave functions that obey ��r+R�
=exp i�k .R���r� for a particular k�, the states �nk� are then
a basis for that subspace. But since �nk� are also eigenstates,
it follows that the Hamiltonian operator does not mix func-
tions belonging to different subspaces. The Hamiltonian is
box diagonal in any basis with well-defined periodicity. This
is computationally very convenient, as we can diagonalize
each subspace and calculate any operator that is a function
only of the Hamiltonian �for example, the Green’s and spec-
tral functions� within that subspace.

In particular, for a periodic tight-binding Hamiltonian in a
real space basis, like Eq. �2�, all the blocks in the diagonal

Ĥ�k� are equal, except for the elements connecting sites
across the boundaries. For these we have

	ri�H�k��r j� = exp i�k . R�	ri�H�r j − R� . �5�

A systematic way to chose k is k	=2	� /LM, with 	
=0,1 , . . . ,M −1, and this is the choice made in the present
work. Therefore, a 12
12 lattice with 8
8 twisted bound-
ary conditions �L=12 and M =8� implies considering distor-
tions within a 12
12 lattice, calculating the Hamiltonian
�1�, and solving the 64 different blocks with boundary con-
ditions for x and y, as in Eq. �5�. Notice that from the point
of view of the electronic structure, this is completely equiva-
lent to solve the Hamiltonian with the same classical field of
period L in an L
M lattice. That is easy to understand just
by considering any complete set of wave functions �being it
the basis in real space or the eigenvectors� in the L
L lat-
tice, and extending them to the �L
M�
 �L
M� lattice in
the obvious way: �nk�rl�→�nk�r�=exp rm

2�i
M �nk�rl�, with r

=rl+Lrm.
In our Monte Carlo simulations, the acceptance or rejec-

tion of configurations has been calculated with periodic
boundary conditions, while the determination of the thermal-
averaged physical quantities has been obtained using twisted
boundary conditions. Systems sizes are 12
12 Mn sites, and
8
8 phases are used for the twisted boundary conditions.
Typically, the thermalization process needed 2000 Monte
Carlo steps, and the Markov chains were 7000–15 000 steps
long �measurements were taken every ten steps�. The usual
definition of Monte Carlo step and further details about the
Monte Carlo procedure can be found in Ref. 23.

Finite size effects are checked with Monte Carlo simula-
tions on 8
8 systems and, for T=0, the direct optimization
of the oxygen positions in larger systems �up to 30
30�.
These size effects are small, as discussed in Sec. IV B.

Along the manuscript, we present results about the spec-
tral function A�k ,�� and the thermal average of the square of
the distortions in k space, 	Q2�k��. The unit in k space is one
over the lattice spacing, so that the Brillouin zone goes from
−� to �, both in x and y. For the distortions, we calculate the
correlation function of the 	=1,2 ,3 Q	 modes explained in
the Appendix: Q	�r� Q	�r ,r+��. After averaging over the
lattice sites, r, we Fourier transform the correlation function.
A straightforward calculation shows that the result is a
thermal-averaged structure factor for each of the distortion
modes,

Q2
2�k� = �

n

exp�En/KBT�Q2,n
2 �k� , �6�

and similarly for other modes. We have dropped the brackets
of thermal average in the notation for convenience.

III. UNDISTORTED SYSTEM AND NONPERFECT
NESTING

The band diagram for the system with no electron-lattice
coupling is shown in Fig. 1. Within the noninteracting sys-
tem, changing doping only changes the chemical potential.
Figure 2 shows the Fermi surfaces for different dopings. Al-
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ready in this limit there are some interesting features. It is
remarkable how it reproduces the essential topology of the
Fermi surface of layered manganites, as compared to experi-
mental results,1,11 and LDA calculations.2 For x=0.4 there is
a small electron pocket, also found in experiments at this
doping.1,3 We can ignore it for now, and concentrate on the
features that are common to all dopings. The Fermi surface
for these two-dimensional systems at the dopings considered
is a closed curve centered at the M point, which appears as
four pieces in Fig. 2. Of course, the Fermi surface presents
the fourfold symmetry imposed by the lattice since there are
no interactions to remove it. Symmetry allows k along the
�� ,��→ �0,0� and �� ,��→ �0,�� directions to be different,
and so they are. For all dopings in Fig. 2 the curvature along
the diagonal is clearly larger �small curvature radius� than
the curvature along the �� ,��→ �0,�� direction. These es-
sential features of the Fermi surface are not only character-

istic of layered manganites, but they are also shared by the
high-Tc cuprates, which also share the effective two-
dimensional electron system and the square lattice. Both for
convenience and to remark the similarity of the Fermi sur-
faces of the two families of compounds, we will follow Ref.
1, and refer to the two directions as nodal �� ,��→ �0,0� and
antinodal �� ,��→ �0,�� directions.

Nesting takes place when finite parts of the Fermi surface
are connected by one wave vector. It is well known that in
these situations the system might be unstable with respect to
a perturbation with the periodicity of that wave vector, even
when the coupling between the electrons and the perturba-
tion is small. Different and numerous examples exist and are
well understood, such as structural �Peierls� instabilities and
spin and charge density waves �see, for instance, Ref. 24 and
references therein�. However, this is not the situation here.
As shown if Fig. 2, the curve, when drawn around the M
point, has constant-sign nonzero curvature and, therefore, a
particular vector in k space can only connect two points
�times fourfold degeneracy� of the Fermi surface: there is no
perfect nesting in layered manganites for the dopings we are
considering.

However, although nonzero, the curvature of the Fermi
surface is small along the antinodal direction. This has con-
sequences that can be better understood by rewriting the
Hamiltonian in k space,

HJT = � �
a,a�,k,q,


�
,a,a�Ck
†aCk−q

a� Q
,q. �7�

Switching to momentum space remarks how the distor-
tions break the translation invariance of the Hamiltonian.
This portion of the Hamiltonian, HJT, will be here considered
as a perturbation. Let us label the eigenstates of the unper-
turbed Hamiltonian as �k
�, where k is the momentum and 

refers to a particular linear combination of eg orbitals. For
nondegenerate states, the first-order correction is
	k
�HJT�k
�. This is only nonzero for q=0, since otherwise it
mixes different eigenstates. The q=0 modes correspond to
changes in the shape of the lattice. Indeed real systems
present such distortions, which lead, for example, to tetrahe-
dral unit cells. However, they are relatively small, and we are
not interested in studying them here, so our boundary condi-
tions for distortions impose a cubic lattice and fixed lattice
parameters. More interesting for our purposes is applying
perturbation theory to degenerate states, by diagonalizing Eq.
�7� within each subspace of degenerate eigenstates. In the
�k
� basis, the Hamiltonian has only off-diagonal terms and,
therefore, the sum of energy shifts within each subspace is
zero. Since the splitting is proportional to the off-diagonal
terms, only subspaces with energies close to the Fermi en-
ergy, where occupations might change, need to be consid-
ered.

For small perturbations, the nesting vector needs to con-
nect states very close to the Fermi energy. But the criteria to
consider degeneracy within subspaces is, of course, that the
energy differences are small compared to the terms in the
perturbing Hamiltonian �7�. We argue here that since the
electron-lattice coupling in manganites is not small, even
nonperfect nesting near the Fermi surface leads to lattice

FIG. 1. �Color online� Energy bands for the 2D two-orbital
model in the spin ferromagnetic state, with no electron-lattice cou-
pling �Eq. �2��. The different horizontal lines correspond to the
chemical potentials for x=0.4 �pink, slashed�, x=0.5 �red, continu-
ous�, and x=0.6 �blue, dashed�, the three different hole dopings
studied in this work.

FIG. 2. �Color online� Fermi surface for the same dopings as in
Fig. 1: x=0.6 �blue, dark gray�, x=0.5 �red, medium gray�, and x
=0.4 �pink, light gray�. The better nesting �i.e., smaller angle be-
tween tangents of different pieces of the Fermi surface� for x=0.4,
as compared to x=0.6, implies that a smaller electron-lattice cou-
pling is needed to induce the pseudogap phase. For x=0.5 the
nested portions of the Fermi surface are separated by knest


2� /4a, which is commensurate with the systems size that can be
studied with the Monte Carlo technique.
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distortions and a suppression of the spectral weight in the
antinodal direction. Entropy also plays an important role,
favoring distortions. Our numerical results indicate that the
well studied coupling of the electronic eg orbitals to the Jahn-
Teller lattice distortions �Eq. �A3�� is responsible for the phe-
nomena observed in experiments: a pseudogap phase with a
gapped dispersion relation along the antinodal direction and
coherent spectral weight along the nodal direction, with the
peculiar Fermi surface forming the so-called Fermi arcs.

Since couplings are not small, we go beyond perturbation
theory and use Monte Carlo numerical simulations to study
the model Eq. �1�. The undistorted system involves the cal-
culation of only one configuration; therefore it is possible to
go to large sizes or include many phases in the twisted
boundary conditions, and track the nesting vectors of the
Fermi surface as a function of doping. The nesting vector
varies continuously with doping, and for x=0.51 it is very
close to �� /2,0�, so that this vector connects the two points
in the antinodal direction, and provides nonperfect nesting in
the sense discussed above. Wave vectors with kx=� /2 and
small ky components are also good candidates, and so are
their equivalents by symmetry. A � /2 wave-vector compo-
nent corresponds to a wavelength of four lattice sites, which
is commensurate with lattice sites accessible to the compu-
tationally expensive Monte Carlo simulations. The situation

is different for x=0.4 and x=0.6 �Sec. V� since the nesting
vector is incommensurate with any of the lattice sizes reach-
able by Monte Carlo simulations. Anyhow, we have per-
formed calculations for different values of � and T for both
x=0.51 and x=0.5, and they are discussed in Sec. IV. We
find that there is hardly any difference between the two dop-
ings. That is again in agreement to the proposed physical
picture of nearly perfect nesting. Not the exact value of the
nesting wave vector, but the fact that there are nearly parallel
segments of the Fermi surface, is what determines the prop-
erties of the system. We will show below that near perfect
nesting and large electron-lattice coupling are responsible for
the peculiar Fermi surface of small-bandwidth manganites in
the FM phase.

Figure 3 shows both the band diagram and the Fermi sur-
face for x=0.5 projected over the two eg orbitals. Besides the
curvature, there is also a clear difference between the nodal
and antinodal directions. While the nested parts along the
antinodal direction have almost equal weight for the two
orbitals, in the nodal direction the Fermi surface is purely of
x2-y2 character. This lack of mixing along the nodal direction
is due to topological reasons, and it will be there for any
system with orbitals of the same symmetry on a square
lattice.

(b)(a)

(d)(c)

FIG. 3. �Color online� Bands �top two panels� and Fermi surface �bottom� projected over the two eg orbitals, as indicated. The higher
overlap of neighboring x2-y2 orbitals within the plane leads to the larger bandwidth of the corresponding projection. Notice how the
symmetry of the orbitals prevents mixing in the �1,1� direction �M-��. Consequently, in that direction, all spectral weight of the Fermi
surfaces in Fig. 2 comes from the x2-y2 orbital, except for the small electron pocket for x=0.4 �light gray in Fig. 2�, which is almost
completely of 3z2-r2 character. The spectral weight near the Brillouin zone face, on the contrary, comes from both orbitals.
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IV. RESULTS AT x=0.5

A. Low temperature

The total density of states shown in Fig. 4 gives a good
idea of the different electronic states in manganites. For
small electron-lattice coupling ��=1.3 or smaller� the system
is metallic. The density of states is fairly smooth since the
Van Hove singularities are smoothed out by temperature. If
we increase the electron-lattice coupling by less than 10%
��=1.39�, the density of states at the Fermi energy drops by
approximately 50%. This is compatible with the pseudogap
phase that shows up in experiments, and has been character-
ized in detail recently for bilayer manganites. Further in-
creases in � diminish the density of states further, and al-
ready for �=1.7 there is a clear gap. The situation is
summarized in Fig. 5. These large changes in electronic
structure with relatively small changes in parameters is well
known for manganites. A reduction in the density of states at
the Fermi energy has also been reported in
one-dimensional17 and in one-orbital models.17,25 Consider-
ing a more realistic model allows us to make a direct com-
parison with experimental results. For the rest of this section,
and the next sections dealing with other dopings, we will
focus on this interesting pseudogap phase, its physical origin,
and the similarities with cuprates.

The physical picture arising from our calculations is illus-
trated by the numerical results presented in Fig. 6. There it

can be seen that distortions with certain wave vectors are
much more likely to take place. As shown in the inset, and
explained in Sec. III, these wave vectors are the ones that
connect points of the Fermi surface �or, more precisely,
points in the bare dispersion relation with an energy close to
the Fermi energy�.

In the numerical simulations, the possible wave vectors of
the distortions are limited by the size of the lattice. As shown
in Fig. 6, this is not very important for the doping x=0.5 we
discuss in this section. The most favorable distortions have
wave vectors with either x or y components of 
1.7, close to
the � /2 allowed by the lattice. For other dopings this might
not be the case. In those situations, the simulation still
chooses the most favorable distortions allowed by the bound-
ary conditions. A larger size will probably mean a closer
wave vector to the ideal one. Therefore, the physical phe-
nomena discussed here might appear for electron-lattice cou-
plings that become slightly smaller as we move to larger
lattice sizes. Anyhow, our simulations show that this effect is
small.

When distortions appear, the system loses the translation
invariance symmetry, and the spectral function is no longer
zero or a constant. Figure 7 shows these changes in the spec-
tral function, for the same parameters as in Fig. 6. We see
how a reduction in the spectral weight takes place near the
antinodal direction. Obviously, this is the same reduction in
the density of states near the Fermi energy seen in Fig. 4 for
��1.39; in k space, the reduction takes place in the nearly
nested parts of the Fermi surface.

As we increase �, this effect is more pronounced. For �
=1.5, there is a clear gap when we look along the antinodal
direction �Fig. 8�. The band along the nodal direction is still
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FIG. 4. �Color online� Total density of states for x=0.5 and
different electron-lattice couplings ��’s� from Monte Carlo simula-
tions at T=0.01. The Fermi energy �EF� for the different parameters
is taken as zero energy. As � increases, the density of states at the
Fermi energy decreases, and, for a large enough �, a gap opens.
Experiments �Refs. 1, 3, and 13� and the present work indicate that
layered manganites are in the pseudogap regime with a strong re-
duction in the density of states at the Fermi energy. A small imagi-
nary part has been given to each eigenvalue arising from the Monte
Carlo simulations in order to obtain a smooth curve.

FIG. 5. Cartoon characterizing the different electronic states of
the system, as a function of � at low T. As the values at which
different electronic structures are found depend on doping and tem-
perature, no precise boundary for them is shown. The values of �
indicated correspond to simulations with x=0.5, and T=0.01.

FIG. 6. �Color online� Monte Carlo average of thermally excited
distortions, as a function of their wave vector. For each �kx ,ky�
point, the size of the dot is proportional to the thermal average of
Q2

2�kx ,ky� �see text�. The main graph shows the thermal average of
the Q2 mode, for �=1.39 and T=0.01. The inset at the top-right
shows the Fermi surface of the undistorted system, where the wave
vectors labeled in the main panel are shown connecting some points
of the Fermi surface. For the thermal-averaged Fermi surface with
these parameters, see Fig. 7. The finite size of the simulation lattice
limits the allowed wave vectors of the distortions, and the number
of them is the same as the number of sites �144 unless otherwise
noted�.
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well defined, despite a small broadening. This enhances the
arclike aspect of the Fermi surface shown in Figs. 8 and 9.
An effect already considered in experiments becomes clear
when comparing these figures. Although increasing � from
1.5 to 1.58 results in a reduction in the spectral weight both

in the nodal and antinodal directions, this reduction is not
easy to see when the intensity scale is set by the maximum in
A�k ,EF�. As a result, Figs. 8 and 9, which we have chosen to
plot with different scales for an easier comparison with ex-
periments, look alike except for a larger broadening of the
Fermi arc for larger �. A similar effect has been discussed in
Ref. 26 regarding the evolution of the Fermi arcs with dop-
ing.

The distortions follow the general pattern discussed for
the �=1.39 simulation. In Fig. 8, we see the Q2, �as in Fig.
6�, and Q1 modes for �=1.5, and the same modes are shown
for �=1.58 in Fig. 9. The Q2 mode follows much closer the
nested wave vectors, while Q1 is more influenced by thermal
noise. This is not surprising as Q2 couples the two eg orbitals
�see Eq. �3��, and we already discussed that the part of the
Fermi arcs that is nested has weight from both x2-y2 and
3z2-r2.

For ��1.6 an ordered phase appears at T=0.01. The four-
fold rotation symmetry of the system is broken and the simu-
lations show an ordered pattern of distortions, coupled to
orbital order, with Q2�� /2,� /2�=Q2�−� /2,−� /2��1 and
Q2�� /2,−� /2�=Q2�−� /2,� /2�=0. This phase was already
discussed in Ref. 27. The orbital and lattice order is similar
to the CE phase, and, more interestingly, also shows a charge

(b)(a)

FIG. 7. �Color online� Spectral function arising from the Monte
Carlo simulations. The same parameters as in Fig. 6 are used
��=1.39, T=0.01, and x=0.5�. �a� Energy cut at the Fermi energy,
and �b� A�k ,E� for k along the high symmetry directions. Already
for this coupling the distortions shown in Fig. 6 result in a reduction
in the spectral weight near the Brillouin zone face �antinodal direc-
tion� that can also be observed in both projections.

(b)(a)

(d)(c)

FIG. 8. �Color online� Results of the Monte Carlo simulation for �=1.5, T=0.01, and x=0.5, using a 12
12 lattice. The spectral function
cut at the Fermi energy is shown in �a�, and its value along the high symmetry directions in �b�. For these parameters, a gap is already formed
along the antinodal direction �X-M�, while in the nodal �M-�� direction there is a coherent band. This turns into a Fermi-arc-like Fermi
surface, with hardly any spectral weight left near the Brillouin zone face, and a well-defined coherent peak near the zone diagonal
�pseudogap regime�. �c� shows the Q1 and Q2 �see text� distortions in k space. A larger electron-lattice coupling as compared to Fig. 6 make
distortions with more wave vectors noticeable under this scale �same as Fig. 6�. However, the distortions with the appropriate nesting wave
vectors are more favored by �, and they produce the arclike Fermi surface shown in �a�.
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order with double periodicity, �� ,��, that couples to the Q1
mode.

Two aspects of the ordered phase appear in the pseudogap
phase as � approaches the transition value. In Fig. 9, the
wave vectors for which the Q2 is significant have already
started to lose the fourfold rotation symmetry. Probably a
long enough Monte Carlo simulation will restore it by visit-
ing the two symmetric possibilities, but the proximity to the
phase transition makes the Monte Carlo dynamics slower,
and we are unable to confirm this. Our results also indicate
that when the thermal average of the Q2 modes with
kx�or ky�= �� /2 is large enough, the Q1 mode with double
periodicity is also substantial �Figs. 8 and 9�. Similarly to the
ordered phase, orbital correlations induce charge correlations
with half the period in the symmetric pseudogap phase.

It is also interesting to note that the gap in the ordered
phase has a minimum in one of the diagonal directions �the
rotation symmetry is lost� of the unfolded Brillouin zone,
that is, the nodal direction where the quasiparticle peaks are
found in the pseudogap phase. These facts are compatible
with fluctuations induced by the proximity to the ordered
phase as a physical origin of the pseudogap phase, at least for
�=1.58 and x=0.5. However, the results for other dopings
presented in the next sections indicate that the pseudogap
phase is induced by nonperfect nesting and intermediate to
large electron-lattice coupling, and it is independent of the
existence of a true long-ranged ordered phase.

Although the Q2 distortions follow more closely the
nested wave vectors than Q1, those do not suffice to repro-
duce all the experimental results. It is possible to explore the
role of Q1 by slightly modifying the model Hamiltonian. Q1
distortions can be reduced by increasing the elastic cost of
this mode, with a factor ��1 multiplying the Q1

2 term in Eq.
�3�. We have run simulations with ��1 and found that this
suppresses or reduces the range of stability of the pseudogap
phase, favoring the metallic and the ordered phase. In par-
ticular, for �=2 and small � ��1.39� the lost of spectral
weight is smaller than for �=1. And for �=1.45 the system
is already in the ordered state. The fragility of the pseudogap
phase with � can be understood by defining a Jahn-Teller
angle � by Q1=Q sin � and Q2=Q cos �. An increase of �
favors �=0 and �=�, which leads more easily to an ordered

phase, and penalizes configurations with other values of �.
Since in the pseudogap phase Q2 follows the nested wave
vectors more closely than Q1, � is small for the nearly nested
k’s, �certainly smaller than � /4�, but nonzero. When � is
constrained to be 0 or �, the pseudogap phase disappears
from the phase diagram within the precision of our calcula-
tions.

(b)

(a)

(c)

FIG. 9. �Color online� Monte Carlo simulation results for �=1.58, T=0.01, and x=0.5, using a 12
12 lattice: �a� A�k ,EF�; �b� Q1 and
Q2 distortions in k space. The system is close to opening a complete gap: spectral weight at the Fermi energy survives only near the �0,0�
to �� ,�� diagonal, or nodal direction. As � increases, distortions with more wave vectors appear on the system �see Fig. 8�. Notice that if
Q2 induces orbital correlations with period 4a �wave vector � /2a�, charge correlations with period 2a can be expected that favor Q1 modes
also with period 2a �wave vector � /a�.
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FIG. 10. �Color online� Dispersion relation �a� and quasiparticle
�QP� weight �b� along the nodal direction, for different �’s. The
dashed lines indicate the position of the Fermi energy for the dif-
ferent couplings. To overcome momentum quantization, a standard
fitting procedure of momentum distribution curves has been fol-
lowed �see text�. This induces a small oscillatory error in the deter-
mination of the QP weight. The �=0 �dotted lines� curves, deter-
mined with the same procedure has been included to illustrate the
error and for comparison purposes. Numerical accuracy is not
enough to determine the effective mass for large �’s. Curvature
rapidly changes around kF, where an s shape dispersion relation is
found, similar to the one reported in experiments �Refs. 1 and 5�. As
spectral weight and curvature change along the Fermi surface we do
not expect this curvature to directly determine transport properties.
QP weight at kF is lost as � increases and the system develops a
pseudogap, but this takes place at larger �’s in the nodal direction,
as compared to the antinodal direction �see Figs. 7�a� and 7�b��.
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In Fig. 10 the dispersion relation and the variation of the
quasiparticle �QP� weight with lambda along the nodal direc-
tion is illustrated. They have been determined by fitting the
momentum distribution curves �in the ARPES literature no-
tation�. As explained in Sec. II C, the twisted boundary con-
ditions improve the determination in the momenta of elec-
trons. With the 8
8 system size and 12
12 twisted
boundary conditions used in the simulations leading to Fig.
10, the number of momenta coming out of the simulations is
still insufficient for a detailed analysis of the dispersion re-
lation. We therefore follow the following standard fitting pro-
cedure. For each energy, the spectral weight is fitted to
Lorentzian functions around the maxima: the center of these
Lorentzian’s define the dispersion relation, while their ampli-
tude determines the quasiparticle weight. Figure 10 shows
that both the dispersion relation, and the quasiparticle weight
for �=1.39 are very close to the �=0 curves �dotted line in
Fig. 10�. This is in sharp contrast with the clear reduction of
spectral weight that already takes place for this � in the
antinodal direction �Figs. 7�a� and 7�b��. When � is further
increased, an s shape feature develops in the dispersion rela-
tion. This has been already observed in ARPES
experiments.1,5 This peculiar shape is accompanied by a
marked reduction in the spectral weight, that for these values
of � starts to occur also in the nodal direction. Our numerical
accuracy is not enough to determine the effective mass for
the higher �and more interesting� �’s, as this accounts to
numerically calculating a second derivative of a curve with
rapidly changing curvature. However important conclusions
can be drawn from the results in Fig. 10. It is doubtful that
transport properties can be predicted by only measuring the
effective mass along the nodal direction, as the spectral
weight and curvature �effective mass� depend strongly on the
k point on the Fermi surface. Not only for transport proper-
ties, as already suggested in Ref. 1, but for the couplings
examined here extreme care should be taken when deriving
any physical quantities from dispersion relation curves.
Eliashberg relations between the electron-lattice coupling
and effective mass �m��, �= ��m� /mo�−1�, appear to fail in
our situation, and it fails to provide even a rough estimate of
the couplings. Within the precision of our calculation, the
effective mass is equal for �=0 and �=1.39, instead of a
factor of 2.8 as predicted by such a formula. Needless to say,

the tensorial character of the effective mass is more impor-
tant in these cases where the anisotropy of the Fermi surface
is enhanced by interactions.

B. Effect of temperature

All the results of the Monte Carlo simulations presented
above were obtained at different values of the electron-lattice
coupling and at a particular temperature T=0.01. The effect
of varying the temperature is discussed next, and summa-
rized in Fig. 11. It is remarkable that, for some couplings, the
system appears essentially undistorted in the simulations at
very low T, and it develops a pseudogap due to the correla-
tions within the thermal induced distortions. This is the case
for �=1.4, as discussed below. An open issue is whether the
pseudogap can survive to T=0. A quantum treatment of the
lattice distortions �beyond the scope of this effort� might lead
to quantum fluctuations qualitatively similar to temperature
fluctuations, thus opening a pseudogap even at T=0.

Figure 12 presents the evolution of the lattice distortions
with temperature for a particular electron-lattice coupling,
�=1.4 �here, we still focus on the influence of the lattice
distortions on the electronic structure keeping the magnetic
degree of freedom frozen�. This coupling strength is particu-
larly interesting since the ordered phase is not yet stable, and
the system appears essentially undistorted at very low tem-
peratures. However, � is big enough to induce strong fluc-
tuations with temperature, which in turn qualitatively change
the electronic spectral function. Results for both 8
8 �left
column� and 12
12 �right column� system sizes are in-
cluded to illustrate the issue of possible finite size effects.

For T=0.08, Fig. 12 shows the pattern of distortions dis-
cussed in previous sections, with the Q2 mode active when k
corresponds to the nested wave vectors. The absolute value is
not large enough to significantly alter the Fermi surface in
Fig. 13, where only a small reduction in spectral weight as
compared to the undistorted system is observed. As the tem-
perature increases, distortions with all wave vectors are ther-
mally excited, but the increase with temperature is larger for
distortions with the nesting wave vector. For T=0.015 in Fig.
13, there is clearly less spectral weight along the antinodal
direction as compared to the nodal direction.

For the larger temperatures in Figs. 12 and 13 magnetic
excitations might be important �T=0.01�T=60 K�. We ex-
pect them to enhance the effect of lattice distortions. Mag-
netic excitations reduce the mean value of the kinetic energy
as described by the double-exchange model,18 thus increas-
ing the relative importance of the electron-lattice coupling.

The absence of important finite size effects can also be
observed in Fig. 12. We have compared distortions for
8
8 and 12
12 lattices, for the same �’s and temperatures.
As expected, small lattices enhance correlations, leading to
slightly larger lattice distortions �note the different scales�. At
very low temperatures, this enhancement of correlations
leads to the appearance of an ordered phase for the 8
8
cluster at �=1.4. However, the Monte Carlo simulations us-
ing the 12
12 system already recover the physically mean-
ingful undistorted result. This has been confirmed by direct
optimization of the oxygen position in systems as large as
30
30 lattice sites.

FIG. 11. Schematic representation of the evolution of the differ-
ent electronic states as a function of temperature. The transforma-
tion from a normal metal with a smooth density of states at the
Fermi energy to the pseudogap �PG� state, with a minimum of the
density of states at the Fermi energy, is continuous �see Fig. 4�. Our
results indicate that temperature favors the pseudogap, as explained
in the text. For x=0.5, the phase with a gap is an ordered phase and
the continuous line separating the PG and the ordered phase corre-
sponds to a first order transition.
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FIG. 12. Evolution of the Q2 Jahn-Teller distortions in k space as a function of temperature for an 8
8 �left column� and 12
12 �right
column� lattices, for �=1.4, at half-doping. In general, distortions are overestimated at low temperatures for small lattice sizes �specially at
temperatures lower than the ones shown�, see legend. Finite size effects are small, and the squarelike feature responsible for the Fermi arcs
consistently appears for these sizes and T range.
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Experiments show that increasing the temperature results
in an enhancement of fluctuations, as it has been observed by
Raman experiments.28 This can be understood in the light of
a double-exchange model. A temperature rise results in a
reduced magnetization, a smaller hopping due to double ex-
change, and a reduction in the bandwidth, making the effec-
tive coupling, measured by the ratio of Jahn-Teller energy to
electronic bandwidth, larger. The results in this section indi-
cate that also entropy favors lattice fluctuations, and that
these lattice fluctuations are not random, but have, for a cer-
tain range of temperatures, correlations induced by the elec-
tronic structure.

V. OTHER DOPINGS: x=0.4 AND x=0.6

With the insight gained by the study of the x=0.5 case,
now we examine the simulations for x=0.4 and x=0.6. This
is important for two reasons. One is that the real layered

systems become CE antiferromagnetic at x=0.5. Although
this FM to AF transition is well understood,21 and it does not
affect our arguments, calculations with x=0.4 should facili-
tate the comparison with experiments. x=0.6 is similar to x
=0.5 with an ordered phase for a narrow doping range, but
our calculations should present general trends observable at
dopings close to the ones presented here. Examining differ-
ent dopings is also important in order to confirm that the
relevant lattice distortions follow the changes in the nesting
vectors with doping, providing another evidence for the
physical picture presented in previous sections.

For x=0.4, there is a larger portion of the Fermi surface
that is nested for the undistorted system �Fig. 2�. Our simu-
lations indicate that this causes the corresponding distortions
�Fig. 14�, to be excited at lower temperatures. For �=1.35,
the distortions are small, but as � increases, distortions with
wave vectors connecting electronic eigenstates in k space

(b)(a) (c) (d)

FIG. 13. �Color online� Spectral function at the Fermi energy for some of the temperatures in Fig. 12 ��=1.4, x=0.5�. At low tempera-
tures the system is undistorted for this �. The nearly perfect nesting of the antinodal portions of the Fermi surface makes the distortions with
the proper nesting vector much more likely to be thermally excited, producing the Fermi arcs. The color scale is the same for all tempera-
tures. At higher temperatures, the entropy contribution to the free energy dominates, and the spectral weight along the nodal and antinodal
directions becomes similar.
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FIG. 14. �Color online� Evolution of the system as a function of � for T=0.001, x=0.4, using a 12
12 lattice. �a� shows Fermi surface
changes. Both the detailed way in which the Fermi surface changes, and the temperature at which the changes take place depend on doping.
For this temperature and the lower two values of �, the system is essentially undistorted at half-doping. Longer nested portions of the Fermi
surface �see Fig. 2� for x=0.4 result in smaller coherent quasiparticle peaks at lower temperatures. As � grows, the Fermi surface shrinks to
small Fermi arcs, making different dopings much more alike �compare �=1.5, and �=1.6 with Figs. 8, 9, and 15�. Q2 Jahn-Teller distortions
in k space are shown in �b�. The behavior is similar to half-doping, but for this doping the nesting wave vectors cannot be well approximated
by a wave vector commensurate with the lattice. For low values of �, the distortions with the nearest commensurate wave vector compo-
nents, 2 /3� /a, are favored, and as � increases, distortions with the next nearest one, � /2a are also present in the system.
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with energy close to the Fermi energy are excited. Figure 14
also shows the Fermi surface resulting from those distor-
tions. Besides being somewhat more noisy due to a slower
Monte Carlo dynamics, the resulting Fermi arcs are shorter,
as the nested portion looses spectral weight. For �=1.6 the
Fermi surface has almost disappeared �note the different
scale for different �’s in the Fermi surfaces of Fig. 14�. The
spectral weight left is once again similar to what has been
observed in cuprates with four quasiparticle peaks in the four
nodal directions.

The doping case x=0.6 follows the general trend ex-
plained in this article, with only small differences. The wave
vectors of the significant distortions in Fig. 15 are smaller, as
compared to x=0.5 and x=0.4, as expected from the undis-
torted Fermi surface �Fig. 2�. Notice, however, that for �
=1.35 the spectral function is similar to the undistorted one,
and correlations between distortions �not shown� do not fol-
low the nested parts of the Fermi surface. This might be
caused by the fact that the nested parts of the Fermi surface
are smaller. � needs to become larger as compared to other
dopings, and only for �=1.45 we do recover a picture con-
sistent with other dopings �Fig. 15� with the same squarelike
features as x=0.5 and x=0.4. As the nested potions of the
Fermi surface are smaller, we observe longer Fermi arcs for
every calculated coupling. Even for �=1.6 where the argu-
ments of perturbation theory seem to be no longer valid, note
that apparently noisy and disordered distortions �Fig. 15�b�,
�=1.6� result in a suppression of the spectral weight in the
antinodal direction.

As recently pointed out by Mannella,29 there is a correla-
tion between the Fermi surfaces obtained by ARPES and
transport properties. The larger spectral weight at the Fermi
energy for dopings around x=0.6 correlates with a larger
in-plane conductivity30 as compared to other dopings.

Similarly to the case of x=0.5 doping, we need to go to
higher temperatures, as compared to the x=0.4 doping, to

observe lattice distortions of similar magnitude in the simu-
lations. Note that x=0.4 is the only doping at which a com-
plete suppression of coherent spectral weight in the antinodal
direction has been observed in experiments.

VI. CONCLUSIONS

This manuscript presents a detailed study of the evolution
of the one-particle spectral function �that can be compared
with ARPES experimental results� as a function of tempera-
ture and electron-lattice coupling in a double-exchange
model for manganites that includes breathing and Jahn-Teller
lattice distortions coupled to the electrons. Several hole dop-
ings were examined. This large effort was made possible by
the use of twisted boundary conditions, and the reduced
computational effort that results from focusing on the rel-
evant degrees of freedom of the problem. Similar interac-
tions and approximations have been previously taken into
account to qualitatively explain a temperature-induced metal
insulator transition.14 This work extends those previous ef-
forts into an analysis of the origin of the pseudogap phase of
manganites. With this framework, the very remarkable ex-
perimental observation of the existence of Fermi arcs1 in
manganites was here addressed.

The Monte Carlo numerical simulation results presented
here show a strong reduction or suppression of the spectral
weight in particular regions of the Fermi surface, in agree-
ment with experimental results1,3 and similarly to the
pseudogap phase of high-Tc cuprates. The microscopic origin
is in the cooperative Jahn-Teller distortions. Nesting argu-
ments show that when the wave vector of these correlated
distortions is such that it connects different parts of the Fermi
surface, it can lower the electronic energy by opening a
pseudogap. Our numerical results support similar previously
proposed scenarios.3 For the range of couplings relevant to
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FIG. 15. �Color online� Monte Carlo simulations results as a function of � for T=0.01, x=0.6, using a 12
12 lattice: The spectral
function at the Fermi level is shown in �a�, and lattice distortions in �b�. For this doping, larger �’s are needed to achieve the reduction in
the spectral weight along the antinodal direction, and the �=1.35 spectral function appears essentially undistorted. Notice how �=1.6 is large
enough such that distortions cannot be understood within the perturbation theory arguments presented in the text. Like the cuprates, in the
strong coupling regime, the Fermi surface is very similar for dopings as different as 10%–20% �see Figs. 9 and 14�
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the experimental results, states with energies close to the
Fermi energy also play a role, and distortions with several
wave vectors appear in the simulations. We argue that this
nonperfect nesting effect is due to the significant electron-
lattice coupling and the effect of temperature. Furthermore,
these correlations are found even for values of the coupling
for which the system is essentially undistorted at low tem-
peratures, which highlights the role of fluctuations. A natural
extension of this work would therefore be the study of a
system with phononic quantum fluctuations at zero tempera-
ture. However, here it was shown that thermal fluctuations
are sufficient to create the Fermi arcs in models for manga-
nites where the lattice degree of freedom is classical.

Different physical regimes were studied here, with par-
ticular attention to the evolution of the spectral function as
the electron-lattice coupling was varied. This is the only pa-
rameter not directly measurable in experiments �as opposed
to temperature and hole doping�. Extensive numerical calcu-
lations show that this effect is not a result of fine tuning of
parameters, but robust with respect to changes in temperature
and doping. The possibility to continuously tune the
electron-lattice coupling allow us to explore the high sensi-
tivity of the system to changes in this parameter. We propose
that this sensitivity is behind the different ARPES experi-
mental results showing the complete suppression1 or strong
reduction3 in spectral weight in the antinodal direction for
the bilayer manganite at x=0.4 doping. Different samples,
different amounts of disorder, or slight modifications in the
composition can lead to small variations in the effective cou-
pling that are amplified by the system’s response.

Changes with temperature were also explored here. Keep-
ing the spins frozen in the ferromagnetic state does not take
into account the kinetic energy reduction of the carriers, but
allow us to observe how the thermally induced fluctuations
of the lattice distortions reduce the spectral weight at the
Fermi energy. This reduction takes place preferentially in the
antinodal directions, and would cooperate with a larger Jahn-
Teller to kinetic energy ratio arising from double exchange to
lead to the observed large changes in the spectral function
with temperature.4
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APPENDIX: ELECTRON-LATTICE HAMILTONIAN

In several previous efforts, the sign of the coupling be-
tween the breathing mode and the density was positive. We
will briefly argue why it should be negative �as in Eq. �3��
and the small differences that might arise for the two differ-
ent signs.

First, let us write down the value of the Q modes in terms
of the oxygen displacements. Consider a Mn ion i: both in
the three-dimensional perovskite structure and in layered

manganites, it has six surrounding oxygen ions. We label i ,x
and i−x ,x the neighboring oxygen ions in the positive and
negative x directions. It is enough to consider oxygen dis-
placements along the Mn-O direction, so let ui,x and ui−x,x be
the displacement of these oxygens along the x direction, and
Qx be the change in the distance between them along the x
direction, Qx=ui,+x-ui,−x. Qy and Qz can be similarly defined.
Since each oxygen is nearest neighbor to two manganese
ions, cooperative effects are taken into account in these in-
vestigations. Then, the distortion modes appearing in Eq. �3�
are

Q1 =
1
�3

�Qx + Qy + Qz� , �A1�

Q2 =
1
�2

�Qx − Qy� , �A2�

Q3 =
1
�6

�− Qx − Qy + 2Qz� . �A3�

Therefore, Q1�0 represents an increase in the volume of the
octahedra. �i is the electronic density at site i. Considering
intuitively the electron-lattice interaction, either in terms of
the Coulomb interaction between electrons and the negative
charged oxygens, or in terms of hybridization between the
Mn d orbitals and the oxygen p orbitals, an increase in the
octahedra volume, or the Mn-O distances, should decrease
the energy of the d orbital.

In order to analyze the differences of the two models
�with or without the negative sign�, we compare the �1,1�
element of the 2
2 matrix describing the interaction in the
eg subspace, with the two signs,

Qz
 1
�3

+
2
�6

� + �Qx + Qy�
 1
�3

−
1
�6

� , �A4�

versus

− �Qx + Qy�
 1

�3
+

1

�6
� − Qz
 1

�3
−

2

�6
� , �A5�

and similarly for the �2,2� element of the matrix. Off-
diagonal terms are unaffected. We can see how the different
signs change the role of a planar breathing mode �Qx+Qy�
and the distortions in the z direction Qz. It also changes a
global sign in both �1,1� and �2,2� elements that would have
some consequences only if we are considering strained sys-
tems, and would predict strain with the wrong sign. This
explains the small effect that the sign has on the results.

Two more remarks: first, the coefficients are not exactly
the same; therefore details, such as the critical � for the
appearance of an ordered phase, might vary slightly with the
two different signs. Second, special care should be taken
when imposing boundary conditions, which are different for
different modes, such us freezing the apical oxygens in 2D
calculations.

An approximation commonly made also minimizes the
effect of the sign in front of Q1. Mean field calculations for
the undoped manganite �x=0, or 1 eg-electron per site� show
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that the on-site Coulomb interaction at the mean-field level
can be modeled with an stiffer Q1 elastic constant �usually
taken to be 2 or larger�.22 With this approximation the expec-
tation value of the Q1 mode would be much less than the Q2
and Q3, especially at low temperatures.

In the present work, since we are interested in dopings
much larger than x=0 �less eg electrons�, the on-site Cou-
lomb interaction is not expected to be as important, and
therefore the same elastic constant is used for all modes.

We have run Monte Carlo simulations with the two signs
and found similar results. We find that, as discussed in the
main body of this article, the Q2 is the most important mode,
which is anyhow unaffected by the sign. In particular, choos-
ing a positive sign in Eq. �3� and freezing the apical oxygens
produces the same results as choosing a negative sign and
imposing �Qz=0, for an almost identical range of �. Since
the former implies a smaller computational effort, it is the
one used in the results presented in the body of the paper.
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